If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12d^2+8d-15=0
a = 12; b = 8; c = -15;
Δ = b2-4ac
Δ = 82-4·12·(-15)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-28}{2*12}=\frac{-36}{24} =-1+1/2 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+28}{2*12}=\frac{20}{24} =5/6 $
| -13x+3=37 | | 5x–(3+2x)=3. | | 25+9x=3-2x | | 8x-(x+3)=3(2x+1) | | 9-24u-6=u-15 | | x+x^2*2=220 | | 3(n−36)−98=−11n+200 | | x2+x–6=0 | | 3n-10=-11n+200 | | x^2+x-0.72=0 | | 14x–4=12x+8 | | x^2+x-1.44=0 | | 5•x-10=25 | | 15+7•x=71 | | 24=h+12 | | 99=g+110 | | 25^m=1 | | 2=(5+0.5)x | | 9h+18=81 | | 19h+18=81 | | 2y=3y+1;y(1)=0 | | 5x+40=4x+20 | | 2y=999 | | 4x+20=3x+24 | | 12y+3=21 | | a–2a-9a= | | 14=a9.6 | | 3^x=30,000 | | a/2-7=-7 | | 75-u=236 | | 7.8x-1.2=3.16x+5. | | 5.x3=26 |